Tuesday, June 27, 2017

显卡参数详解

一、显卡芯片参数解析

首先一个重要的概念就是ROPs(Raster Operations Units),即光栅化处理单元,表示显示GPU拥有的ROP光栅操作处理单元的数量。通常来说:3D图形处理可以分成四个主要步骤,几何处理、设置、纹理和光栅处理,而ROPs就是处理光栅单元。那么光栅化处理单元的多少对显卡性能有哪些影响了?

ROPs(光栅化处理单元)主要负责游戏中的光线和反射运算,兼顾AA、高分辨率、烟雾、火焰等效果。游戏里的AA(抗锯齿)和光影效果越厉害,对ROPs(光栅化处理单元)的性能要求也就越高,否则就可能导致游戏帧数急剧下降.比如同样是某个游戏的最高画质效果,8个光栅单元的显卡可能只能跑25帧.而16个光栅单元的显卡则可以稳定在35帧以上。举一个例子:GTX550Ti和HD6790前者是24个ROPs单元,后者是16个ROPs单元,虽然在大部分测试项目中,HD6790都是领先GTX550Ti的,但是在高AA(抗锯齿)负载的情况下,HD6790的弱点即刻暴露出来,16个ROPs单元显得有点力不从心。从FarCry 2中也印证出了这一点:游戏中4xAA设置下HD 6790的落后幅度为4%左右,而开启8xAA后性能落后幅度则扩大至15-17%之多。

需要注意的是,AMD显卡和NVIDIA显卡在ROPs的设计上是有区别的,N卡的ROPs单元和流处理器是“捆绑”的,即置于SIMD之内,所以倘若消减N卡的流处理数量,其ROPs单元也随之消减;而A卡则不一样,其ROPs单元和流处理器单元是没有关联的。

第二个重要的概念:Shaders。传统管线架构:以往显卡由顶点渲染管线和像素渲染管线组成,生成图像的过程都是先由顶点渲染管线中的Vertex Shader(顶点着色器)生成基础的几何图形骨架(由三角形构成),然后再由像素渲染管线中的Pixel Shader(像素着色器)进行填色,最后才是像素渲染管线中的纹理单元进行贴图。而当新的统一渲染架构提出之后,顶点着色器和像素着色器被合二为一,成为流处理器(Shaders),它将同时负责顶点着色和像素着色,避免了负载不均衡的情况发生。最先提出统一渲染架构的是微软的DirectX 10。步入DX10时代,shader单元数量成为衡量显卡级别的重要参数之一。

需要说明的是,N卡和A卡的所采取的核心架构是不一样的,N卡采用的是MIMD架构。多指令流多数据流(MultipleInstructionStreamMultipleDataStream,简称MIMD),它使用多个控制器来异步地控制多个处理器,从而实现空间上的并行性,所以N卡是一个发射器;A卡采用的是SIMD架构设计,即Single Instruction Multiple Data(单指令流多数据流),A卡是将4个简单指令+1个复杂指令打包,再用一个发射器发出。所以A/N两者不能进行流处理器数量的简单对比。

最后我们要解析的是像素填充率(Pixel Fillrate)和纹理填充率(Texture Fillrate)。

像素填充率是指图形处理单元在每秒内所渲染的像素数量,单位是GPixel/S(每秒十亿纹理)
像素填充率=核心频率×光栅单元数目/1000

纹理填充速率是指在多边形每个面上填充的颜色的纹理,单位是GPixel/S(每秒十亿像素)
纹理填充率=核心频率×纹理单元数目/1000

这两个参数的值在GPU-Z中自然是越大则越能表明显卡所能处理的能力越强悍。并且核心频率是像素填充率(Pixel Fillrate)和纹理填充率(Texture Fillrate)的计算因数,显然显卡核心频率越高,这两个值越大。而其中的光栅单元数目即ROPs的值,ROPs的值越大,像素填充率也就越大。

二、显存参数别忘了“位宽兄弟”

Memory Type(显存类型),现如今,最新的主流高端级显卡都采用的是GDDR5的显存颗粒,之前主流的GDDR3显存颗粒也正式退役至二线,而GDDR4显存颗粒仅仅是个过渡型产品,市售的显卡所见不多。GDDR5相对于GDDR3的核心优势在于显存带宽大幅度提升。

显存带宽(Bandwidth)=(显存位宽 ×显存工作频率)/ 8

从上面的计算公式我们可以清楚的看到,由于GDDR5显存颗粒具备两条数据总线,所以虽然采用的是和GDDR3同样的8位预取机制,但显存的工作频率可以到达GDDR3的两倍。最为典型的一个例子就是:采用GDDR5显存的GT240显卡要比采用GDDR3显存的GT240显卡性能领先16%左右,所以凭借强大的带宽优势,GDDR5在同位宽的情况下可以全面超越GDDR3。

Bus Width(位宽)往往是玩家最容易忽视的一个概念。显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大。可以说显存位宽对显卡性能的影响相比显存容量而言要大不少。

显卡显存位宽的权重到底有多大?当显卡都采用GDDR5显存颗粒的时候,显存位宽就成为了影响性能的关键瓶颈。

最后我们需要提醒玩家注意的是显存容量(Memory Size)这个最经典的“骗局”,就是利用A卡的Hyper Memory(HM)或N卡的Turbo Cache(TC)的动态共享系统内存技术来谎称显卡的显存容量,想必这样的招数在进过前些年的“洗礼”之后,现在的不少消费者也逐渐对这样的雕虫小技都能够很快的精准识别。

三、显卡频率:核心频率>显存频率

显卡的频率,我们主要关注的是核心频率和显存频率。两者相比较而言,核心频率对显卡性能的影响权重较大。所以我们玩家在超频的时候先提升的核心频率,再才是显存频率。为什么说核心频率的重要性更大一些了?打个比方,核心频率就相当于个人自身能力,而显存频率好比外在条件,而一个人的成功往往取决于个人能力而外在条件仅在一定程度上对其有影响,简而言之:一个是内因而另一个是外因。

需要说明的是由于核心架构的设计不同,N卡的GPU核心频率和Shader频率呈现2倍的关系,而A卡的GPU核心频率和Shader频率是一致的。

显存频率是指默认情况下,该显存在显卡上工作时的频率,以MHz(兆赫兹)为单位。

关于GDDR5显存频率,由于以往GDDR1/2/3/4和DDR1/2/3的数据总线都是采用的DDR技术(通过差分时钟在上升沿和下降沿各传输一次数据),官方标称的频率X2就是数据传输率,也就是通常我们所说的等效频率。而GDDR5则不同,它有两条数据总线,相当于Rambus的QDR技术,所以官方标称频率X4才是数据传输率。比如GTX590官方显存频率是854MHz,而大家习惯称之为3416MHz。

四、驱动、交火和其他运算能力

显卡的性能的表现在有些程度上与显卡驱动存在着一定的关系,因为GPU厂商会对显卡做针对性的优化。所以我们推荐玩家选择最新版的WHQL版驱动来体验你的显卡。

SLI和Crossfire技术提供了多卡互联的技术解决方案。关于什么样的显卡组建多卡互联系统会显得更具性价比了?个人建议采用中断显卡组建系统会显的更划算一些,当然资金充裕的话,采用中高端显卡来组建多卡互联系统也可以,如果采用低端的显卡来组建交火的话,这样就不大太划算,因为可能低端显卡组建的平台性能优势才仅仅相当于中端卡的能力,而价格却已经超过了单块中端显卡的价钱。

最后我们来看看Computing计算能力这一项,OpenCL(全称Open Computing Language,开放运算语言)、CUDA(通用并行计算架构)、PhysX(物理加速)和DirectCompute 5.0(是一种用于GPU通用计算的应用程序接口)。

对比A卡,N卡在Computing这项的表现上显得更加出色,N卡全部支持四项运算能力,而A卡仅支持一项DirectCompute 5.0。倘若玩家对借助CUDA技术实现高清转码或者玩的游戏需要PhysX物理加速技术的支持,那么玩家可以考虑购买N卡,因为这些正是N卡所强势的地方。

五、总结:“显卡性能参数排排坐”

进过了前面详细的介绍与分析,我们对显卡的主要性能参数有了一个相对全面的认识和了解。玩家在购买显卡的时候,可能对这么多性能参数“有点晕”,所以我们有必要对这些显卡性能参数的权重进行一个高低顺序的排序。下面是笔者所总结的一个相对简洁的显卡性能排序:

①显卡核心和制程

显卡核心是关键,核心不行其他再好都是浮云,核心先进那么显卡的性能自然会提升一个很大的档次;制程越先进,显卡的发热量和功耗越低。

②流处理器和ROPs

流处理器数量上的增加或缩减对显卡的性能影响可谓是立竿见影,所以GPU厂商也常常利用这一方法来对显卡产品进行市场细分。ROPs数量的多数影响在游戏画面中的AA(抗锯齿)和光影特效等方面。

③核心频率和显存频率

核心频率影响的是像素填充速率和纹理填充率,而显存频率影响的是显存带宽,两者同时都作为影响因子,所以参数值越大,自然显卡性能越强悍。不过过高的频率设定对显卡自身有一定影响,合理的频率设定是我们所要选择的显卡。

④像素填充速率和纹理填充率

像素填充率=核心频率×光栅单元数目/1000
纹理填充率=核心频率×纹理单元数目/1000

⑤显存位宽和显存带宽

显存带宽=工作频率×显存位宽/8(显存带宽 =显存位宽×显存频率/8/1024)
显存位宽越大,那么瞬间所能传输的数据量越大。显存带宽的作用好比桥梁一样,为显示核心和显存提供了一条交换数据的通道。

⑥显存大小和其他参数

显存太小的话会导致在游戏过程中有帧数不稳定的显示。

本文选自:中关村在线

Leave a Reply

Your email address will not be published. Required fields are marked *