Wednesday, November 13, 2024

Flash芯片总述及SLC、MLC、TLC和QLC的区别

NOR Flash 和 NAND Flash是现在市场上两种主要的非易失闪存技术。Intel于1988年首先开发出NOR Flash 技术,彻底改变了原先由EPROM(Electrically Programmable Read-Only-Memory电可编程序只读存储器)和EEPROM(电可擦只读存储器Electrically Erasable Programmable Read – Only Memory)一统天下的局面。紧接着,1989年,东芝公司发表了NAND Flash 结构,强调降低每比特的成本,有更高的性能,并且像磁盘一样可以通过接口轻松升级。NOR Flash 的特点是芯片内执行(XIP ,eXecute In Place),这样应用程序可以直接在Flash闪存内运行,不必再把代码读到系统RAM中。NOR 的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响到它的性能。NAND的结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的速度也很快。应用NAND的困难在于Flash的管理和需要特殊的系统接口。通常读取NOR的速度比NAND稍快一些,而NAND的写入速度比NOR快很多,在设计中应该考虑这些情况。

NAND Flash根据存储原理分为三种,SLC、MLC、TLC。

什么是SLC?SLC英文全称(Single Level Cell——SLC)即单层式储存 。主要由三星、海力士、美光、东芝等使用。
SLC技术特点是在浮置闸极与源极之中的氧化薄膜更薄,在写入数据时通过对浮置闸极的电荷加电压,然后透过源极,即可将所储存的电荷消除,通过这样的方式,便可储存1个信息单元,这种技术能提供快速的程序编程与读取,不过此技术受限于Silicon efficiency的问题,必须要由较先进的流程强化技术(Process enhancements),才能向上提升SLC制程技术。

什么是MLC?MLC英文全称(Multi Level Cell——MLC)即多层式储存。主要由东芝、Renesas、三星使用。
MLC是英特尔(Intel)在1997年9月最先研发成功的,其原理是将两个位的信息存入一个浮动栅(Floating Gate,闪存存储单元中存放电荷的部分),然后利用不同电位(Level)的电荷,透过内存储存格的电压控制精准读写。MLC通过使用大量的电压等级,每个单元储存两位数据,数据密度比较大。SLC架构是0和1两个值,而MLC架构可以一次储存4个以上的值,因此,MLC架构可以有比较好的储存密度。讲白话点就是一个Cell存放多个bit,现在常见的MLC架构闪存每Cell可存放2bit,容量是同等SLC架构芯片的2倍,目前三星、东芝、海力士(Hynix)、IMFT(英特尔与美光合资公司)、瑞萨(Renesas)都是此技术的使用者,而且这个队伍还在不断壮大,其发展速度远快于曾经的SLC架构。

与SLC比较MLC的优势:鉴于目前市场主要以SLC和MLC储存为主,我们多了解下SLC和MLC储存。SLC架构是0和1两个值,而MLC架构可以一次储存4个以上的值,因此MLC架构的储存密度较高,并且可以利用老旧的生产程备来提高产品的容量,无须额外投资生产设备,拥有成本与良率的优势。与SLC相比较,MLC生产成本较低,容量大。如果经过改进,MLC的读写性能应该还可以进一步提升。与SLC比较MLC的缺点:MLC架构有许多缺点,首先是使用寿命较短,SLC架构可以写入10万次,而MLC架构只能承受约1万次的写入。其次就是存取速度慢,在目前技术条件下,MLC芯片理论速度只能达到6MB左右。SLC架构比MLC架构要快速三倍以上。再者,MLC能耗比SLC高,在相同使用条件下比SLC要多15%左右的电流消耗。虽然与SLC相比,MLC缺点很多,但在单颗芯片容量方面,目前MLC还是占了绝对的优势。由于MLC架构和成本都具有绝对优势,能满足2GB、4GB、8GB甚至更大容量的市场需求。

什么是TLC? TLC = Triple-Level Cell,即3 bit per cell架构。TLC芯片技术是SLC和MLC技术的延伸,最早期NAND Flash技术架构是SLC(Single-Level Cell),原理是在1个存储器储存单元(cell)中存放1位元(bit)的资料,直到MLC(Multi-Level Cell)技术接棒后,架构演进为1个存储器储存单元存放2位元。 2009年TLC架构正式问世,代表1个存储器储存单元可存放3位元,成本进一步大幅降低。如同上一波SLC技术转MLC技术趋势般,这次也是由NAND Flash大厂东芝(Toshiba)引发战火,之后三星电子(Samsung Electronics)也赶紧加入战局,使得整个TLC技术大量被量产且应用在终端产品上。TLC芯片虽然储存容量变大,成本低廉许多,但因为效能也大打折扣,因此仅能用在低阶的NAND Flash相关产品上,象是低速快闪记忆卡、小型记忆卡microSD或随身碟等。智能型手机(Smartphone)、固态硬碟(SSD)等技术门槛高,对于NAND Flash效能讲求高速且不出错等应用产品,则一定要使用SLC或MLC芯片。

根据NAND的物理结构,NAND是通过绝缘层存储数据的。当你要写入数据,需要施加电压并形成一个电场,这样电子就可以通过绝缘体进入到存储单元,此时完成写入数据。如果要删除存储单元(数据),则要再次施加电压让电子穿过绝缘层,从而离开存储单元。所以,NAND闪存在重新写入新数据之前必须要删除原来数据。

由于数据写入到TLC中需要八种不同电压状态, 而施加不同的电压状态、尤其是相对较高的电压,需要更长的时间才能得以实现(电压不断增高的过程,直到合适的电压值被发现才算完成)。

所以,在TLC中数据所需访问时间更长,因此传输速度更慢。经过实测,同等技术条件下,TLC的SSD性能是比不上MLC SSD的。

什么是QLC? QLC = Quad-Level Cell架构,即4bit/cell,支持16充电值,速度最慢寿命最短,目前中技术上在研发阶段,但是intel、三星电子等厂商都已经取得了不错的进展。但在SSD应用中目前仍不现实 。

需要说明的闪存的寿命指的是写入(擦写)的次数,不是读出的次数,因为读取对芯片的寿命影响不大。下面是SLC、MLC、TLC、QLC闪存芯片的区别:

SLC = Single-Level Cell,即1bit/cell,利用正、负两种电荷,一个浮动栅存储1个bit的信息,约10万次擦写寿命。速度快,寿命长,价格贵(约MLC 3倍以上的价格)。
MLC = Multi-Level Cell,即2bit/cell,利用不同电位的电荷,一个浮动栅存储2个bit的信息,约5000-10000次擦写寿命。速度一般,寿命一般,价格一般。
TLC = Trinary-Level Cell,即3bit/cell,利用不同电位的电荷,一个浮动栅存储3个bit的信息,约500-1000次擦写寿命。也有Flash厂家叫8LC,速度慢,寿命短,价格便宜。
QLC = Quad-Level Cell,即4bit/cell。

相对于SLC来说,MLC的容量大了100%,寿命缩短为SLC的1/10。相对于MLC来说,TLC的容量大了50%,寿命缩短为MLC的1/20。

NAND闪存技术:2D NAND和3D NAND

在上文中,我们介绍了根据闪存颗粒内部电子数的不同,会分为SLC/MLC/TLC,而随着晶圆物理极限的不断迫近,固态硬盘上单体的存储单元内部的能够装载的闪存颗粒已经接近极限了,更加专业的术语表述就是单die能够装载的颗粒数已经到达极限了,要想进一步扩大单die的可用容量,就必须在技术上进行创新。

于是,3D NAND技术也就应运而生了。在解释3D NAND之前,我们先得弄清楚2D NAND是什么,以及“2D”和“3D”的真实含义。

首先是2D NAND,我们知道在数学和物理领域,2D/3D都是指的方向,都是指的坐标轴,“2D”指的是平面上的长和宽,而“3D”则是在“2D”基础上,添加了一个垂直方向的“高”的概念。

由此,2D NAND真实的含义其实就是一种颗粒在单die内部的排列方式,是按照传统二维平面模式进行排列闪存颗粒的。

相对应的,3D NAND则是在二维平面基础上,在垂直方向也进行颗粒的排列,即将原本平面的堆叠方式,进行了创新。

利用新的技术(即3D NAND技术)使得颗粒能够进行立体式的堆叠,从而解决了由于晶圆物理极限而无法进一步扩大单die可用容量的限制,在同样体积大小的情况下,极大的提升了闪存颗粒单die的容量体积,进一步推动了存储颗粒总体容量的飙升。

同时,在业界,根据在垂直方向堆叠的颗粒层数不同,和选用的颗粒种类不同,3D NAND颗粒又可以分为32层、48层甚至64层 3D TLC/MLC颗粒的不同产品,这取决于各大原厂厂商的技术储备和实际选用的颗粒种类。

我们可以打个比方,来理解2D NAND和3D NAND技艺之间的区别和联系。

2D NAND就如同在一块有限的平面上建立的数间平房,这些平房整齐排列,但是随着需求量的不断增加,平房的数量不断井喷,可最终这块面积有限的平面只能容纳一定数量的平房而无法继续增加;
3D NAND则就如同在同一块平面上盖起的楼房,在同样的平面中,楼房的容积率却远远高于平房,因而它能提供更多的空间,也就是提供了更大的存储空间,而32层、48层以及64层,则就是这些楼房的高度,一共堆叠了多少层。

虽然,3D NAND技术能够在同等体积下,提供更多的存储空间,但是这项堆叠技术对于原厂制造商来说有着相当的操作难度,需要原厂有着相当的技术积累,因而目前能够掌握3D NAND技术的原厂公司十分少见,只有三星、美光等少数公司的3D NAND颗粒实现了量产和问世。

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.